3.72 \(\int \sinh ^2(e+f x) \sqrt{a+b \sinh ^2(e+f x)} \, dx\)

Optimal. Leaf size=177 \[ \frac{i a (a-b) \sqrt{\frac{b \sinh ^2(e+f x)}{a}+1} \text{EllipticF}\left (i e+i f x,\frac{b}{a}\right )}{3 b f \sqrt{a+b \sinh ^2(e+f x)}}+\frac{\sinh (e+f x) \cosh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{i (a-2 b) \sqrt{a+b \sinh ^2(e+f x)} E\left (i e+i f x\left |\frac{b}{a}\right .\right )}{3 b f \sqrt{\frac{b \sinh ^2(e+f x)}{a}+1}} \]

[Out]

(Cosh[e + f*x]*Sinh[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f) - ((I/3)*(a - 2*b)*EllipticE[I*e + I*f*x, b/a]
*Sqrt[a + b*Sinh[e + f*x]^2])/(b*f*Sqrt[1 + (b*Sinh[e + f*x]^2)/a]) + ((I/3)*a*(a - b)*EllipticF[I*e + I*f*x,
b/a]*Sqrt[1 + (b*Sinh[e + f*x]^2)/a])/(b*f*Sqrt[a + b*Sinh[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.213308, antiderivative size = 177, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3170, 3172, 3178, 3177, 3183, 3182} \[ \frac{\sinh (e+f x) \cosh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}+\frac{i a (a-b) \sqrt{\frac{b \sinh ^2(e+f x)}{a}+1} F\left (i e+i f x\left |\frac{b}{a}\right .\right )}{3 b f \sqrt{a+b \sinh ^2(e+f x)}}-\frac{i (a-2 b) \sqrt{a+b \sinh ^2(e+f x)} E\left (i e+i f x\left |\frac{b}{a}\right .\right )}{3 b f \sqrt{\frac{b \sinh ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[e + f*x]^2*Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

(Cosh[e + f*x]*Sinh[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f) - ((I/3)*(a - 2*b)*EllipticE[I*e + I*f*x, b/a]
*Sqrt[a + b*Sinh[e + f*x]^2])/(b*f*Sqrt[1 + (b*Sinh[e + f*x]^2)/a]) + ((I/3)*a*(a - b)*EllipticF[I*e + I*f*x,
b/a]*Sqrt[1 + (b*Sinh[e + f*x]^2)/a])/(b*f*Sqrt[a + b*Sinh[e + f*x]^2])

Rule 3170

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Sim
p[(B*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^p)/(2*f*(p + 1)), x] + Dist[1/(2*(p + 1)), Int[(a + b*Si
n[e + f*x]^2)^(p - 1)*Simp[a*B + 2*a*A*(p + 1) + (2*A*b*(p + 1) + B*(b + 2*a*p + 2*b*p))*Sin[e + f*x]^2, x], x
], x] /; FreeQ[{a, b, e, f, A, B}, x] && GtQ[p, 0]

Rule 3172

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[
B/b, Int[Sqrt[a + b*Sin[e + f*x]^2], x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /;
FreeQ[{a, b, e, f, A, B}, x]

Rule 3178

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + (b*Sin
[e + f*x]^2)/a], Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3177

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[e + f*x, -(b/a)])/f, x]
 /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rule 3183

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[1 + (b*Sin[e + f*x]^2)/a]/Sqrt[a +
b*Sin[e + f*x]^2], Int[1/Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3182

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1*EllipticF[e + f*x, -(b/a)])/(Sqrt[a]*
f), x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \sinh ^2(e+f x) \sqrt{a+b \sinh ^2(e+f x)} \, dx &=\frac{\cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{1}{3} \int \frac{a-(a-2 b) \sinh ^2(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx\\ &=\frac{\cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}+\frac{(a-2 b) \int \sqrt{a+b \sinh ^2(e+f x)} \, dx}{3 b}-\frac{(a (a-b)) \int \frac{1}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx}{3 b}\\ &=\frac{\cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}+\frac{\left ((a-2 b) \sqrt{a+b \sinh ^2(e+f x)}\right ) \int \sqrt{1+\frac{b \sinh ^2(e+f x)}{a}} \, dx}{3 b \sqrt{1+\frac{b \sinh ^2(e+f x)}{a}}}-\frac{\left (a (a-b) \sqrt{1+\frac{b \sinh ^2(e+f x)}{a}}\right ) \int \frac{1}{\sqrt{1+\frac{b \sinh ^2(e+f x)}{a}}} \, dx}{3 b \sqrt{a+b \sinh ^2(e+f x)}}\\ &=\frac{\cosh (e+f x) \sinh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{3 f}-\frac{i (a-2 b) E\left (i e+i f x\left |\frac{b}{a}\right .\right ) \sqrt{a+b \sinh ^2(e+f x)}}{3 b f \sqrt{1+\frac{b \sinh ^2(e+f x)}{a}}}+\frac{i a (a-b) F\left (i e+i f x\left |\frac{b}{a}\right .\right ) \sqrt{1+\frac{b \sinh ^2(e+f x)}{a}}}{3 b f \sqrt{a+b \sinh ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.84108, size = 170, normalized size = 0.96 \[ \frac{2 i \sqrt{2} a (a-b) \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} \text{EllipticF}\left (i (e+f x),\frac{b}{a}\right )+b \sinh (2 (e+f x)) (2 a+b \cosh (2 (e+f x))-b)-2 i \sqrt{2} a (a-2 b) \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )}{6 b f \sqrt{4 a+2 b \cosh (2 (e+f x))-2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[e + f*x]^2*Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((-2*I)*Sqrt[2]*a*(a - 2*b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (2*I)*Sqrt[2
]*a*(a - b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] + b*(2*a - b + b*Cosh[2*(e + f
*x)])*Sinh[2*(e + f*x)])/(6*b*f*Sqrt[4*a - 2*b + 2*b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 0.065, size = 343, normalized size = 1.9 \begin{align*} -{\frac{1}{3\,f\cosh \left ( fx+e \right ) } \left ( -\sqrt{-{\frac{b}{a}}}b\sinh \left ( fx+e \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{4}+ \left ( -\sqrt{-{\frac{b}{a}}}a+\sqrt{-{\frac{b}{a}}}b \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2}\sinh \left ( fx+e \right ) +2\,a\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) -2\,\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) b-\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticE} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) a+2\,\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}\sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{\it EllipticE} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) b \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(1/2),x)

[Out]

-1/3*(-(-1/a*b)^(1/2)*b*sinh(f*x+e)*cosh(f*x+e)^4+(-(-1/a*b)^(1/2)*a+(-1/a*b)^(1/2)*b)*cosh(f*x+e)^2*sinh(f*x+
e)+2*a*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2
))-2*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))
*b-(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a
+2*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b
)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sinh \left (f x + e\right )^{2} + a} \sinh \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*sinh(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \sinh \left (f x + e\right )^{2} + a} \sinh \left (f x + e\right )^{2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)*sinh(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)**2*(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sinh \left (f x + e\right )^{2} + a} \sinh \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*sinh(f*x + e)^2, x)